Pathwise stability of likelihood estimators for diffusions via rough paths
نویسندگان
چکیده
We consider the estimation problem of an unknown drift parameter within classes of non-degenerate diffusion processes. The Maximum Likelihood Estimator (MLE) is analyzed with regard to its pathwise stability properties and robustness towards misspecification in volatility and even the very nature of noise. We construct a version of the estimator based on rough integrals (in the sense of T. Lyons) and present strong evidence that this construction resolves a number of stability issues inherent to the standard MLEs.
منابع مشابه
Large Deviations and Support Theorem for Diffusions via Rough Paths
Abstract. – We use the continuity theorem of T. Lyons for rough paths in the p-variation topology to produce an elementary approach to the large deviation principle and the support theorem for diffusion processes. The proofs reduce to establish the corresponding results for Brownian motion itself as a rough path in the p-variation topology, 2 < p < 3, and the technical step is to handle the Lév...
متن کاملThe Pearson diffusions: A class of statistically tractable diffusion processes
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating functions are found, and the corresponding estimators are shown to be consistent and asymptotically normal. The discussion covers GMM, quasi-l...
متن کاملAn Analysis of Hansen-Scheinkman Moment Estimators for Discretely and Randomly Sampled Diffusions
We derive closed form expansions for the asymptotic distribution of Hansen and Scheinkman (1995) moment estimators for discretely, and possibly randomly, sampled diffusions. This result makes it possible to select optimal moment conditions as well as to assess the efficiency of the resulting parameter estimators relative to likelihood-based estimators, or to an alternative type of moment condit...
متن کاملSample Partitioning Estimation for Ergodic Diffusions
In this paper we present a new technique to obtain estimators for parameters of ergodic processes. When a diffusion is ergodic its transition density converges to the invariant density [1]. This convergence enabled us to introduce a sample partitioning technique that gives, in each sub-sample, observations that can be treated as independent and identically distributed. Within this framework, is...
متن کاملRough evolution equations
We show how to generalize Lyons’ rough paths theory in order to give a pathwise meaning to some non-linear infinite-dimensional evolution equations associated to an analytic semigroup and driven by an irregular noise. As an illustration, we apply the theory to a class of 1d SPDEs driven by a space-time fractional Brownian motion.
متن کامل